ETMAG

CORONALECTURE 9

Linear independence – ctd.

Matrices

May 18, 12:15

Definition. (alternate definition od *span*)

Let $S \subseteq V$ (a sub**set**, not necessarily a sub**space**). Then by span(S) we denote the smallest subspace of V containing S.

We call span(S) the *subspace spanned by S*.

One advantage of this definition over the other one is it covers the case $S = \emptyset$ without branching.

Fact.

Let V(S) denote the set of all subspaces of V containing S. Then

$$span(S) = \bigcap_{T \in V(S)} T$$

Proof. It is enough to show that intersection of a collection of subspaces is a subspace of V and that is easy. (All contain Θ so intersection does, too, etc.)

Theorem.

The set $S=\{v_1,v_2,\ldots,v_n\}$ is linearly independent iff no vector from S is a linear combination of the others.

Proof. (\Rightarrow) Suppose one of the vectors is a linear combination of the others. Without loss of generality we may assume that v_n is the one, i.e. $v_n = a_1v_1 + a_2v_2 + \dots \cdot a_{n-1}v_{n-1}$. Then we may write $\Theta = a_1v_1 + a_2v_2 + \dots \cdot a_{n-1}v_{n-1} + (-1)v_n$. Since $-1 \neq 0$ the set $\{v_1, v_2, \dots, v_n\}$ is linearly dependent.

(\Leftarrow) Suppose now that $\{v_1, v_2, \dots, v_n\}$ is linearly dependent, i.e. there exist coefficients a_1, a_2, \dots, a_n , not all of them zeroes, such that $\Theta = a_1 v_1 + a_2 v_2 + \dots a_n v_n$. Again, without losing generality, we may assume that $a_n \neq 0$ (we can always renumber the vectors so that the one with nonzero coefficient is the last). Since nonzero scalars are invertible, we have $v_n = (-a_1 a_n^{-1})v_1 + (-a_2 a_n^{-1})v_2 + \dots + (-a_{n-1} a_n^{-1})v_{n-1}$

Examples. (on linear independence) Decide which sets are linearly independent:

- 1. $\{(1,0),(0,1)\}$ in \mathbb{R}^2 over \mathbb{R}
- 2. $\{(x,y),(2x,2y)\}$ in \mathbb{R}^2 over \mathbb{R}
- 3. $\{(1,2,1), (1,-2,1), (2,0,2)\}$ in \mathbb{R}^3 over \mathbb{R}
- 4. $\{1, x, x^2, ..., x^n\}$ in $R_n[x]$ over \mathbb{R}
- 5. $\{\sin x, \cos x, x\}$ in $\mathbb{R}^{\mathbb{R}}$ over \mathbb{R}
- 6. $\{\{a,b\},\{a\},\emptyset\} \text{ in } 2^{\{a,b,c\}} \text{ over } \mathbb{Z}_2$

Example 5.

 $\{\sin x, \cos x, x\}$ in $\mathbb{R}^{\mathbb{R}}$ over \mathbb{R}

Solution. Consider $a \sin x + b \cos x + c x = \Theta$. The golden question is what the hell is Θ (zero vector) in $\mathbb{R}^{\mathbb{R}}$? Obviously the constant zero function, $\Theta(x)=0$ for every x. Hence our condition means: $(\forall x \in \mathbb{R})$ $a \sin x + b \cos x + c x = \Theta(x) = 0$. This means whatever number we replace x with the equality hold. Try x=0. We get a0 + b1 + c0 = 0, which means b=0. Knowing b=0, try $x=\pi$. This gives us a + 0 + 0 = 0, so c=0. Putting $x = \frac{\pi}{2}$ we get a1 = 0, a=0.

Theorem.

Suppose V is a vector space, dimV=n, n>0 and S⊆V. Then

- 1. If |S|=n and S is linearly independent then S is a basis for V
- 2. If |S|=n and span(S)=V then S is a basis for V
- 3. If S is linearly independent then $|S| \le n$
- 4. If S spans V then S contains a basis of V
- 5. S is a basis of V iff S is a maximal linearly independent subset of V
- 6. S is a basis of V iff S is a minimal spanning set for V

Definition.

An $m \times n$ matrix over a field \mathbb{F} is a function

$$A:\{1,2,\ldots,m\}\times\{1,2,\ldots,n\}\to\mathbb{F}.$$

A matrix is usually represented by (and identified with) an m×n ("m by n") array of elements of the field (usually numbers). The horizontal lines of a matrix are referred to as <u>rows</u> and the vertical ones as <u>columns</u>. The individual elements are called <u>entries</u> of the matrix.

Thus an m×n matrix has m rows, n columns and mn entries.

Matrices will be denoted by capital letters and their entries by the corresponding small letters. Thus, in case of a matrix A we will write $A(i,j)=a_{i,j}$ and will refer to $a_{i,j}$ as the element of the i-th row and j-th column of A.

On the other hand we will use the symbol $[a_{i,j}]$ to denote the matrix A with entries $a_{i,j}$. Rows and columns of a matrix can (and will) be considered vectors from \mathbb{F}^n and \mathbb{F}^m , respectively, and will be denoted by r_1, r_2, \ldots, r_m and c_1, c_2, \ldots, c_n . The expression $m \times n$ is called the <u>size</u> of a matrix.

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \dots & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{bmatrix}$$

Algebra of matrices

Definition.

Matrix addition is only defined for matrices of matching sizes, (A+B)(i,j) = A(i,j)+B(i,j), $1 \le i \le m$, $1 \le j \le n$ (addition of functions). (cA)(i,j) = cA(i,j), $1 \le i \le m$, $1 \le j \le n$ (multiplication of a function by a constant)

Fact.

The set of all m×n matrices over a field $\mathbb{F}(\mathbb{F}^{m\times n})$ with these operations is a vector space over \mathbb{F} . Its dimension is mn.

Matrix multiplication. This is completely different story!

Definition.

Let A be an $m \times n$ and B a $p \times q$ matrix. The product AB is only defined if $n \times p$. Then

$$(AB)(i,j) = \sum_{s=1}^{n} A(i,s) B(s,j).$$

AB is clearly an $m \times q$ matrix.

Matrix multiplication is obviously noncommutative, it may happen that AB exists while BA does not.

Comprehension. Find an example of two 2×2 matrices A and B such that $AB\neq BA$.

Matrix multiplication – example.

$$\begin{bmatrix}
2 & 4 & 2 & 2 \\
0 & 0 & 3
\end{bmatrix}$$

$$A\begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
2 & -1 \\
2 & 2 \\
0 & 3
\end{bmatrix}
B
\begin{bmatrix}
1 & 2 & -2 \\
2 & 1 & 3
\end{bmatrix}
A
\begin{bmatrix}
1 & 2 & -2 \\
2 & 1 & 3
\end{bmatrix}
A
\begin{bmatrix}
1 & 2 & -2 \\
2 & 1 & 3
\end{bmatrix}$$

$$X \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$$

Definition.

Transposition is a unary operation on matrices. If A is an $m \times n$ matrix then "A transposed" is the $n \times m$ matrix A^T such that for each i and j ($1 \le i \le n, 1 \le j \le m$) $A^T(i,j) = A(j,i)$.

In other words, the first row of A becomes the first column of A^{T} and so on.

Definition.

If $A = A^{T}$ then A is said to be *symmetric*.

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,k} \\ a_{2,1} & a_{2,2} & \dots & a_{2,k} \\ \vdots & \vdots & \dots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,k} \end{bmatrix}^T = \begin{bmatrix} a_{1,1} & a_{2,1} & \dots & a_{n,1} \\ a_{1,2} & a_{2,2} & \dots & a_{n,2} \\ \vdots & \vdots & \dots & \vdots \\ a_{1,n} & a_{2,n} & \dots & a_{n,k} \end{bmatrix}$$

Example.

$$[1 \ 3 \ 4]^T = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix},$$

$$([1 \ 3 \ 4]^T)^T = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}^T = [1 \ 3 \ 4]$$

Fact. (obvious)

For every matrix A

$$(A^T)^T = A$$

Fact. (far less obvious but easy enough) For every two matrices A and B such that AB exists $(AB)^T = B^T A^T$

Proof.

$$(AB)^{T}(j, i) = (AB)(i, j) =$$

$$\sum_{s=1}^{n} A(i,s) B(s,j) =$$

$$\sum_{s=1}^{n} A^{T}(s,i) B^{T}(j,s) =$$

$$\sum_{s=1}^{n} B^{T}(j,s) A^{T}(s,i) =$$

$$B^T A^T(j,i)$$

Switch to slide #15 of the old presentation